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“Genomics-assisted breeding”, which utilizes genomics-based methods, e.g., genome-
wide association study (GWAS) and genomic selection (GS), has been attracting
attention, especially in the field of fruit breeding. Low-cost genotyping technologies that
support genome-assisted breeding have already been established. However, efficient
collection of large amounts of high-quality phenotypic data is essential for the success of
such breeding. Most of the fruit quality traits have been sensorily and visually evaluated
by professional breeders. However, the fruit morphological features that serve as the
basis for such sensory and visual judgments are unclear. This makes it difficult to
collect efficient phenotypic data on fruit quality traits using image analysis. In this
study, we developed a method to automatically measure the morphological features
of citrus fruits by the image analysis of cross-sectional images of citrus fruits. We
applied explainable machine learning methods and Bayesian networks to determine the
relationship between fruit morphological features and two sensorily evaluated fruit quality
traits: easiness of peeling (Peeling) and fruit hardness (FruH). In each of all the methods
applied in this study, the degradation area of the central core of the fruit was significantly
and directly associated with both Peeling and FruH, while the seed area was significantly
and directly related to FruH alone. The degradation area of albedo and the area of
flavedo were also significantly and directly related to Peeling and FruH, respectively,
except in one or two methods. These results suggest that an approach that combines
explainable machine learning methods, Bayesian networks, and image analysis can
be effective in dissecting the experienced sense of a breeder. In breeding programs,
collecting fruit images and efficiently measuring and documenting fruit morphological
features that are related to fruit quality traits may increase the size of data for the
analysis and improvement of the accuracy of GWAS and GS on the quality traits of
the citrus fruits.
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INTRODUCTION

The global demand for high-quality fruits is increasing rapidly,
and fruit quality has become an essential breeding target (Jenks
and Bebeli, 2011). Cross-breeding to obtain cultivars with high-
quality fruits generally takes many years due to the long juvenile
period of fruit trees. In light of this constraint, it is sensible
for the breeders to evaluate as many genotypes as possible
to increase the acquisition rate of the new varieties. However,
the large size of the fruit trees, makes this to be difficult
due to limited orchard space. To overcome these barriers of
conventional fruit tree breeding, “genomics-assisted breeding,”
which utilizes genomic-based methods, such as genome-wide
association study (GWAS) and genomic selection (GS), has been
attracting attention, especially in the field of fruit breeding (Iwata
et al., 2016). The GWAS can detect and identify quantitative
trait loci (QTL) or the genes responsible for the trait of interest
without the need for segregating biparental populations required
for QTL mapping (Korte and Farlow, 2013). The GS can be
used to select superior genotypes in the very early stage of
seedlings based on genomic estimated breeding values (GEBV)
predicted from genome-wide marker information (Meuwissen
et al., 2001). For GWAS and GS to be successful, the phenotypic
and marker genotype data should be routinely collected from
the real breeding populations. Especially in fruit trees, collecting
large datasets obtained from experimental trials is difficult due
to the barriers previously listed, and this is in line with the
idea of, “breeding-assisted genomics” proposed by Poland (2015).
The immense potential of GWAS and GS using real breeding
populations has already been reported in fruit trees, e.g., citrus
(Minamikawa et al., 2017; Imai et al., 2019), apple (Muranty et al.,
2015; Minamikawa et al., 2021), and Japanese pear (Minamikawa
et al., 2018; Nishio et al., 2021).

To further improve the accuracy of GWAS and GS for
practical breeding, we need to increase both the number and
quality of the phenotypic and marker genotype data (Poland,
2015; Iwata et al., 2016; Varshney et al., 2021). While the
throughput and cost-effectiveness of genotyping have improved
significantly, the measurement of traits of interest, such as
fruit quality, remains insufficient in these regards. Most of the
fruit quality traits have been subjected to visual and sensory
evaluations by a handful of professional breeders, and phenotypic
values of the traits are expressed as qualitative categorical scores.
For example, in citrus breeding programs, the color of pericarp
(nine categories) and the number of seeds (four categories)
are traits that are evaluated visually, while the easiness of
peeling (Peeling; five categories) and fruit hardness (FruH; five
categories) are traits that are subjected to sensory evaluation
(Minamikawa et al., 2017). A qualitative assessment based on
the sense of the breeder may not be sufficient to evaluate
the diverse and continuous variation of the fruit qualities.
Expertise in visual and sensory evaluation can be obtained
only after a long technical experience, and increasing the
number of specialized breeders may not be suitable for low-
cost phenotyping.

Image analysis is one way to overcome the shortcomings
of the current qualitative evaluation, and it has been applied

to quantitative evaluation of fruit quality traits, such as the
fruit color of apricot (Farina et al., 2010) and fruit shapes of
sweet orange (Costa et al., 2009) and apple (Currie et al., 2000).
Although this method can be easily applied to the visually
evaluated traits, it is difficult to apply to the sensorily evaluated
traits, e.g., Peeling and FruH (Minamikawa et al., 2017), because
the fruit morphological features that serve as the basis for such
sensory judgments are unclear.

Explainable machine learning methods would be a clue to
reveal the relationship between sensorily evaluated traits and
the fruit morphological features. In recent years, with improved
computer performance and access to big data, various machine
learning models have been employed to achieve precision
agriculture (e.g., yield prediction and disease detection; Liakos
et al., 2018). While traditional machine learning models, such
as multiple linear regression (MLR) and random forest (RF),
require a feature extraction from images by a specialist, deep
neural networks, called deep learning models, perform the feature
extraction during the learning process. These machine learning
models have been considered as “black boxes” because of the
difficulty in interpreting their complex models, but in recent
years, various feature interpretation and visualization methods
have been proposed. For example, variable importance (Breiman,
2001a), partial dependence for the variable (Friedman, 2001), and
variable interactions (Basu et al., 2018) provided an opportunity
to interpret the relevance of the features in the generated
RF model. Gradient-weighted class activation mapping (Grad-
CAM; Selvaraju et al., 2017) visualizes the important features
and regions of an image through classification based on deep
learning models.

Bayesian networks may also be an effective method to identify
the underlying network structure in the sensorily evaluated traits
and the fruit morphological features. A Bayesian network is a
graphical model that represents the probabilistic relationships
among the variables of interest (Heckerman et al., 1995). Yu
et al. (2019) used the Bayesian network approach to elucidate
the genetic interdependence of various agronomic traits in rice,
and predicted the potential influence of external interventions or
selections associated with the traits of interest in the interrelated
complex traits system.

In this study, we developed a method to quantitatively
and automatically evaluate the fruit morphological features
using the image analysis of the cross-sectional images of
fruits among a wide range of citrus fruits, one of the most
cultivated and produced fruits globally (Omura and Shimada,
2016). Then, using the explainable machine learning methods
and the Bayesian networks, we investigated the relationship
between fruit morphological features and the two fruit quality
traits, Peeling and FruH, that were subjected to sensory and
qualitative evaluation (Minamikawa et al., 2017), to identify the
important fruit morphological features as the sensory indicators
of breeders for these fruit quality traits. Peeling and FruH are
pivotal traits to affect the freshness and storability of citrus
fruits, respectively. Finally, we discussed the similarities and
differences between the two highly correlated fruit quality traits
(correlation coefficient (r) between Peeling and FruH was 0.76;
Minamikawa et al., 2017).
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MATERIALS AND METHODS

Fruit Harvest and Acquisition of Fruit
Images
A total of 108 citrus varieties, a wide range of species, including
varieties that are economically cultivated in Japan and used
as parents in the breeding program of the National Institute
of Fruit and Tea Science (NIFTS; Shizuoka, Japan), were used
in this study (Supplementary Table 1). All the varieties were
maintained at the NIFTS. The citrus fruits were sampled every
December from 2008 to 2014 as described by Minamikawa et al.
(2017). Five fruits per variety were obtained from 2008 to 2014
and were used for the evaluation of the two fruit quality traits,
the easiness of peeling (Peeling) and the fruit hardness (FruH)
(Figure 1; Minamikawa et al., 2017). Furthermore, another five
fruits were obtained in 2013 from each of the 92 of these
varieties, and again in 2014 from 105 varieties (there were 89
common varieties in both 2013 and 2014); these were used
to acquire fruit images (Supplementary Table 1). Due to the
nature of the alternative bearing of citrus fruits (2-year cycle
of large and small harvests), we could not obtain enough
fruits for some varieties in both the years to acquire images.
We took 7,020 × 10,200 pixel images containing 10 double-
sided (in the case of 2013) or 5 single-sided (in the case of
2014) fruit cross-sections per image from the five fruits of
each variety using a flatbed scanner (DS-50000, Epson, Japan).
The resolution of the image was 600 dpi with 24-bit colors.

The images were then separated into one fruit cross-section,
each (Figure 2).

Evaluation of Fruit Morphological
Features Using Image Analysis
Twenty-one morphological features (e.g., areas and colors) of
eight regions of each fruit were quantitatively measured by the
image analysis (Table 1, Figure 2, and Supplementary Table 2).
In instances where some regions of a fruit were not able to be
clearly extracted, a characteristic value of the affected regions was
set to 0. The method of quantitative evaluation is summarized
in Supplementary Table 2. Two image processing libraries in
the programming language, Python ver. 3.7.4, “OpenCV” ver.
4.2.0 (Bradski, 2000) and “Scikit-image” ver. 0.15.0 (Van Der
Walt et al., 2014), coupled with three data science libraries in
Python, “NumPy” ver. 1.17.2 (Harris et al., 2020), “SciPy” ver.
1.4.1 (Virtanen et al., 2020), and “Pandas” ver. 0.25.1 (McKinney,
2010), were used for the image analysis. The mean values for
each cultivar were estimated by fitting a mixed linear model
(MLM). In the model, the effects of the year and genotype were
treated as fixed and random effects, respectively, to remove the
yearly effect. The best linear unbiased prediction (BLUP) values
of the genotypic effect estimated by the MLM were used as
the expected phenotypic values (i.e., genotypic values) of each
cultivar in the subsequent analyses. The MLM was implemented
in the “lmer” function of the R package “lme4” ver. 1.1–26
(Bates et al., 2015).

FIGURE 1 | Breeder-evaluated fruit quality traits. Peeling and FruH indicate the easiness of peeling and fruit hardness, respectively. Both the traits were sensorily and
qualitatively evaluated by a small number of professional breeders.
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FIGURE 2 | Cross-sectional images of a citrus fruit used for the quantitative evaluation of morphological features. In each image, the top-right information indicates
the fruit morphological region (DegCenter = degradation of center; DegAlbedo = degradation of albedo); the bottom information indicates the features evaluated
from the morphological region. In total, 21 morphological features (Table 1) were extracted and quantitatively evaluated from the images of citrus fruits using Python.

Breeder-Evaluated Fruit Quality Traits
Easiness of peeling (Peeling) and fruit hardness (FruH) were
sensorily and qualitatively evaluated by the breeders (Figure 1;
Minamikawa et al., 2017) and scored as five ordinal categories.
However, the continuous BLUP values for each cultivar were
calculated by fitting the same form of MLM as the fruit
morphological features to remove the year effect. The BLUP
values were used for subsequent analysis as the expected
phenotypic values of each cultivar.

Multiple Linear Regression and Random
Forest
To evaluate the relationships between the two fruit quality
traits (Peeling and FruH) and the fruit morphological features,

we built models predicting the former based on the latter
using two supervised machine-learning algorithms, multiple
linear regression (MLR) and non-linear Random Forest (RF)
regression. Each fruit quality trait was used as the response
variable and the fruit morphological features were used as
explainable variables in the machine learning models. To
prevent multicollinearity, only 18 of 21 fruit morphological
characteristics, which had correlation coefficients between the
features of less than 0.95, were used in the constructions of the
model. For example, Whole area and Radius (r = 0.98), Flavedo
Lab (L) and Flavedo Lab (b) (r = 0.97), and Albedo area and
Albedo thickness (r = 0.99) were highly correlated morphological
characteristics (Supplementary Figure 1); therefore, one
characteristic was randomly selected from each pair of the two
characteristics, i.e., Whole area, Flavedo Lab (L), and Albedo
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TABLE 1 | Fruit morphological features evaluated in this study.

Region Feature Abbreviation

Whole Whole area of fruit cross-section Whole area

Radius of whole area Radius

Circularity of whole area Circularity

Number of locules in whole area Locule number

Central angle of locules in whole area Locule angle

Variance of central angle of locules in whole area Locule angleVar

Flavedo Flavedo area in whole areaa Flavedo area

Flavedo color (L* value of L*a*b* color space) Flavedo Lab (L)

Flavedo color (a* value of L*a*b* color space) Flavedo Lab (a)

Flavedo color (b* value of L*a*b* color space) Flavedo Lab (b)

Albedo Albedo area in Whole areaa Albedo area

Thickness of Albedo areab Albedo thickness

DegAlbedo Degradation area of Albedoa DegAlbedo area

Flesh Flesh area in whole areaa Flesh area

Flesh color (L* value of L*a*b* color space) Flesh Lab (L)

Flesh color (a* value of L*a*b* color space) Flesh Lab (a)

Flesh color (b* value of L*a*b* color space) Flesh Lab (b)

Seed Seed area in Whole areaa Seed area

Seed number in Whole area Seed number

Center Central core area in fruit cross-sectiona Center area

DegCenter Degradation area of Center areaa DegCenter area

aEach value of these areas was divided by the value of the whole area.
bThe value of albedo thickness was divided by the value of the radius.
Twenty-one fruit morphological features derived from eight different regions of citrus
fruit were quantitatively evaluated using Python (Supplementary Table 2).

area. The MLR can model the response with a linear combination
of variables, while RF uses non-linear combinations of variables,
and can handle complex interactions among the variables
(Breiman, 2001b). For estimating the coefficients in MLR, the R
function “lm” (Wilkinson and Rogers, 1973; Chambers, 1992)
was used. Although RF has been referred to as a “black box”
due to the difficulty in interpreting a model (Breiman, 2001b),
we employed the following three indices: variable importance
(Breiman, 2001a), partial dependence for the variable (Friedman,
2001), and variable interactions (Basu et al., 2018), which allowed
us to interpret the model visually. The variable importance was
calculated using the R package, “Boruta” ver. 7.0.0 (Kursa and
Rudnicki, 2010), which is specifically designed as a wrapper
algorithm built for a RF implementation with the R package,
“randomForest” (Breiman, 2001a). The Boruta algorithm can
find important variables significantly relevant to the response
by comparing the importance of real variables with those of
dummy variables, the so-called shadow variables, which were
obtained by permuting a copy of the real variables (Kursa and
Rudnicki, 2010). The partial dependence plot was generated
using the R package, “randomForest” ver. 4.6.14 (Breiman,
2001a). The variable interactions were searched for by using the
R package, “iRF” ver. 2.0.0. (Basu et al., 2018). The iRF algorithm
can find low- to high-ordered stable interactions of variables by
growing weighted random forests iteratively. The stable variable
interactions for the select iterations were obtained by analyzing
feature usage on the decision paths of large leaf nodes.

To evaluate the goodness of fit of the MLR and RF models,
we conducted 10-fold cross-validation (CV) using our 108
citrus varieties. The CV was repeated five times, and the same
partition patterns were adapted to the two models in each CV.
The prediction accuracy was defined as Pearson’s correlation
coefficients (r) and root-mean-square error (RMSE) between the
predicted and observed values.

Partial Correlation Analysis
A partial correlation analysis (Kim, 2015) was performed
to measure the direct correlation between each of the fruit
morphological features and the two fruit quality traits. The
fruit morphological features whose associations with the fruit
quality traits were significant in either the MLR or the Boruta
analysis were used in the partial correlation analysis. The partial
correlation coefficient between the two traits was estimated
after eliminating the effects of all other fruit morphological
features and compared with the correlation coefficient of the
apparent correlation which included the influence of the other
fruit morphological features. The partial correlation and apparent
correlation coefficients were calculated by using the R package,
“ppcor” ver. 1.1 (Kim, 2015) and the R standard function,
“cor,” respectively.

Bayesian Network
To estimate the underlying network structure of the fruit
morphological features and the breeder-evaluated fruit quality
traits (Peeling and FruH), a Bayesian network was constructed.
We used the fruit morphological features that were significantly
correlated with the fruit quality traits in the partial correlation
analysis to construct the Bayesian network. There are three
types of algorithms for learning the structure of the Bayesian
network: constraint-based algorithm, score-based algorithm,
and a hybrid algorithm of these two (Scutari and Denis,
2021). The score-based algorithms have been reported to be
more accurate than the constraint-based algorithm because the
score-based algorithms, unlike the constraint-based algorithm,
consider the whole network structure at once and thus are less
sensitive to individual failures (Koller and Friedman, 2009).
Furthermore, the hybrid algorithms are more accurate than both
the constraint- and score-based algorithms (Tsamardinos et al.,
2006). We, therefore, adopted the two score-based algorithms
(Hill Climbing and Tabu) and two hybrid algorithms (Max-Min
Hill Climbing and General 2-Phase Restricted Maximization)
for the construction of Bayesian networks in this study. These
algorithms were implemented in the R package, “bnlearn” ver.
4.6.1 (Scutari and Denis, 2021). Prior information on the data,
such as that elicited from experts, could be integrated into all
the provided algorithms using this package. We assumed that the
breeder-evaluated fruit quality traits (Peeling and FruH) were the
endpoint of each network and set-up the “blacklist” function in
the package to prevent arcs leading away from the fruit quality
traits toward the fruit morphological features.

The quality of the network structure was evaluated by
the bootstrap resampling and model averaging across 5,000
replications using the “bnlearn” package. The strength of each arc
and the confidence of the direction of each arc in the network
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were estimated probabilistically by using the bootstrapping
replicates. The accuracy of the networks was evaluated using
the Bayesian information criterion (BIC) score. In the “bnlearn”
package, the BIC score is rescaled by −2; that is, a higher BIC
value indicates a more accurate structure.

Deep Learning Models and Feature
Visualization
Based on the expected phenotypic values of the fruit quality
traits, the fruit images were labeled as shown in Supplementary
Table 3 for the binary classification (i.e., easy and difficult classes
for Peeling and soft and hard classes for FruH) with deep
learning. The number of fruit images to train the deep learning
model for each trait was more extensive in 2013 (800 images)
than in 2014 (480 images). These fruit images were resized
to 224 × 224 pixels to fit with the original image size from
the standard image dataset, ImageNet (Deng et al., 2009), and
then were augmented by flipping horizontally and vertically and
rotating (90◦) in the deep learning framework, “Keras” ver. 2.4.3
(Chollet, 2017). In this study, four convolution neural network
(CNN) models pretrained with the ImageNet dataset,VGG16,
ResNet50, InceptionV3, and InceptionResNetV2, were used for
the classification task. All of the models were implemented in
the framework, “Keras” (Chollet, 2017). We adopted four fine-
tuning strategies (Supplementary Figure 2) for model training.
The layers, FT0, FT1, FT2, and FT3 indicate the number of
layers (or modules) we chose to fine-tune, while the rest of the
layers were frozen (Supplementary Figure 2). The following
parameter setting was applied for all the models: the optimizer
was Adam, a learning rate of 0.00001, batch size of 30, and the
number of epochs was set to 50. The fruit images obtained from
2013 and 2014 were learned separately under the consideration
of yearly differences in the fruit quality traits and features in
the fruit images. The learned model was saved when the loss
value for the validation dataset was the minimum value in 50
epochs, and then evaluated with a confusion matrix and area
under the curve (AUC) of a receiver operating characteristics
(ROC) plot (Fawcett, 2006) by using the prediction dataset
(Supplementary Table 3).

Grad-CAM, a feature visualization method (Selvaraju et al.,
2017), was used to visualize the features in the fruit images that
were important for the classification of Peeling (easy, difficult)
and FruH (soft, hard). Grad-CAM uses the feature map of the last
convolutional layer in the model to find the important features
in the image. In this study, the last convolutional layer of the
simple CNN model, the VGG16, was used for Grad-CAM, as it
showed greater classification performance (Akagi et al., 2020).
In that study, it was thought to be hard to backpropagate the
layers in CNN with more complicated layers, such as ResNet50,
InceptionV3, and InceptionResNetV2. The Grad-CAM method
was implemented in the deep learning framework, “Keras” ver.
2.4.3 (Chollet, 2017).

The relevance of the classification given by the Grad-CAM
method was quantified in each of the seven regions of the fruit
(except Whole region) (Table 1 and Figure 2). The mean values
of the relevant levels in each region were calculated from the

fruit images of the prediction dataset (Supplementary Table 3)
that gave correct predictions. Then, the relevance levels were
compared between the two classes for both Peeling and FruH
to statistically reveal the difference of the features that were
important for the classification.

RESULTS

Modeling of Fruit Quality Traits Using
Fruit Morphological Features
Twenty-one fruit morphological features derived from eight
regions of a citrus fruit were quantitatively evaluated for each
cultivar with image analysis (Table 1 and Figure 2). To prevent
multicollinearity, we chose 18 out of 21 of the fruit morphological
features (r < 0.95; Supplementary Figure 1) as the explainable
variables of the model predicting the fruit quality traits (Peeling
and FruH; Figure 1).

Seven [Flesh Lab (a), DegCenter area, Circularity, Seed
area, Flavedo area, Locule angle, and Whole area; in the
increasing order of regression coefficient] and eight [Flesh area,
Flavedo Lab (a), DegCenter area, Whole area, Seed area, Locule
number, Locule angle, and Flavedo area; in the increasing
order of regression coefficient] fruit morphological features were
significantly associated with Peeling and FruH, respectively, in
the MLR (Figure 3A and Supplementary Table 4). In contrast,
13 fruit morphological features [DegCenter area, Flesh Lab (a),
Flavedo Lab (a), Flavedo Lab (L), Albedo area, Locule angle,
Locule number, Flesh area, Flesh Lab (b), Seed number, Whole
area, DegAlbedo area, and Flavedo area; in the decreasing
order of variable importance] were significantly associated with
Peeling, and 16 features [Flavedo Lab (a), Flesh Lab (a),
DegCenter area, Flavedo Lab (L), Whole area, Locule angle,
Albedo area, Seed area, Center area, Locule number, Circularity,
Flesh area, Flavedo area, Seed number, Flesh Lab (b), and
DegAlbedo area; in the decreasing order of variable importance]
with FruH, in RF (Figure 3B and Supplementary Table 4).
DegCenter (degradation of center) area showed a significant
association with the two fruit quality traits in both the MLR
and RF and had a negative effect on both the traits in MLR
(Figure 3A). The partial dependence of the two fruit quality traits
was also gradually decreased as the value of the DegCenter area
was larger (Figure 3C). In contrast, the Locule angle, Flavedo
area, and Whole area were significantly associated with the two
fruit quality traits in both the MLR and RF and had positive
effects on both the traits in the MLR (Figure 3A). The partial
dependence of the two fruit quality traits gradually increased as
the values of the Locule angle and Flavedo area were getting
larger, while that for Whole area was gradually decreased by as
much as around 0 in the value of Whole area, and gradually
increased thereafter. Similar trends of association in MLR and
RF were observed for the 18 fruit morphological characteristics,
including Radius, Flavedo Lab (b), and Albedo thickness, which
were not randomly selected in the model constructions to
prevent multicollinearity (Supplementary Figure 3). Several
low- to high-ordered stable interactions, including DegCenter
and Whole area, were detected for both Peeling and FruH by
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FIGURE 3 | Associations between fruit morphological features and breeder-evaluated fruit quality traits using multiple linear regression and random forest.
(A) Regression coefficients estimated using multiple linear regression (MLR). Asterisks indicate statistically significant correlations: ∗p < 0.05; ∗∗p < 0.01. (B) Variable
importance in the random forest (RF) model. (C) Partial dependence calculated for the RF model.
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iterative RF (Supplementary Figure 4). Ten-fold CV showed that
RF had a higher accuracy (larger r and smaller RMSE values)
compared to MLR in both the Peeling and FruH (Table 2).

Flesh Lab (a) and Flavedo Lab (a) were significantly associated
with Peeling and FruH, respectively, in both the MLR and RF
(Figures 3A,B). Both the features had larger negative effects on
the two fruit quality traits, although it is unlikely that this color
information is directly associated with the physical properties of
Peeling and FruH. We, therefore, performed a partial correlation
analysis to measure the direct correlation between each of the
fruit morphological features and the two fruit quality traits.
The partial correlation coefficients between Flesh Lab (a) and
Peeling and between Flavedo Lab (a) and FruH largely decreased,
compared with the apparent correlation (Figure 4). Excluding the
characteristics related to color, DegCenter area was significantly
correlated with Peeling and FruH in the partial correlation and
had the largest negative effect on the two fruit quality traits
(Figure 4B and Supplementary Table 4). In contrast, Whole
area was significantly correlated with the two fruit quality traits
and had the largest and the second-largest positive effects on
Peeling and FruH, respectively. Seed area, which was significantly
correlated with only FruH, had the largest positive effect on FruH.

Satsuma mandarin (Citrus unshiu Marcov.), which showed
the lowest Peeling and FruH values (i.e., easiest Peeling and
softest FruH) among the varieties used in this study, had higher
or lower values for DegCenter and Whole areas, respectively,
among the varieties (Supplementary Figure 5). On the other
hand, Banpeiyu (Citrus maxima Merr.) showed the opposite
trend to that of Satsuma. For Seed area, Satsuma (softest FruH)
and Banpeiyu (the third hardest FruH) had lower and higher
values, respectively, among the varieties.

Construction of Network Structures for
Fruit Morphological Features and Fruit
Quality Traits via Bayesian Networks
To build the Bayesian network, the five (DegCenter area, Flesh
Lab (a), DegAlbedo area, Flavedo area, and Whole area; in
the increasing order of partial correlation coefficient) and nine
(Flavedo Lab (a), DegCenter area, Flesh Lab (a), Flesh Lab (b),
Locule number, Flavedo area, Locule angle, Whole area, and Seed
area; in the increasing order of partial correlation coefficient) fruit
morphological features, which were all significantly associated
with Peeling and FruH, respectively, in the partial correlation

TABLE 2 | Prediction accuracy of multiple linear regression (MLR) and
random forest (RF).

Trait Correlation RMSE

MLR RF p-value MLR RF p-value

Peeling 0.71 (0.02) 0.72 (0.01) 0.30 0.68 (0.02) 0.66 (0.01) 0.06

FruH 0.68 (0.02) 0.70 (0.01) 0.10 0.77 (0.02) 0.74 (0.01) 0.04

The prediction accuracy was measured as Pearson’s correlation coefficient (r) and
root mean square error (RMSE) for the predicted and observed values. Values in
bold signify the greatest accuracy (the highest r and the lowest RMSE values) and
p-values < 0.05 for each trait. Values in parentheses represent the SD.

analysis, were used. The two score-based algorithms (Hill
Climbing and Tabu) produced a greater number of arcs and
showed higher accuracies (higher BIC values) than the two
hybrid algorithms (Max-Min Hill Climbing and General 2-Phase
Restricted Maximization) (Figures 5A–H). Both Hill Climbing
and Tabu, which returned the largest BIC scores, showed the most
favorable networks for Peeling (Figures 5A,B). Hill Climbing was
also the best network for FruH (Figure 5E).

Among the most favorable networks for Peeling, DegCenter
and DegAlbedo areas and Flesh Lab (a) had directed arcs toward
Peeling (Figures 5A,B and Supplementary Table 4). The arc
strength was greater for DegCenter area and Flesh Lab (a)
(1.00) than DegAlbedo area (<0.7). The confidence for the
arc direction was also high for all the three morphological
features. On the other hand, DegCenter, Seed, Flavedo areas,
and Flavedo Lab (a) had directed arcs toward FruH in
the most favorable network (Figure 5E and Supplementary
Table 4). Arc strength was the greatest for DegCenter area
(1.00). The confidence for the arc direction was also high
for all the four morphological features. Although the Whole
area was significantly associated with Peeling and FruH, and
had a larger positive effect on the two fruit quality traits,
it did not have a directed edge to Peeling and FruH in
any of the favored Bayesian networks (Figures 5A,B,E). The
whole area was shown to be indirectly associated with Peeling
and FruH.

Visualization of Fruit Morphological
Features That Contribute to
Classification Using Deep Learning
Models
Among the four CNN models applied in this study, InceptionV3
attained the highest classification accuracy for Peeling (0.94)
and FruH (0.95), respectively (Table 3), although even the
simplest CNN, VGG16 (Supplementary Figure 2), showed
almost the same accuracy as InceptionV3 for each trait (0.92
for Peeling and 0.95 for FruH) (Table 3 and Supplementary
Figures 6–9). The ROC-AUC values also supported this trend
(Supplementary Figures 6C, 7C, 8C, 9C). Classification accuracy
was higher when using the 2013 images than those from 2014
(Table 3). The FT1, FT2, and FT3 strategies offered higher
accuracies compared to FT0 for both the two fruit quality
traits and years. The accuracy either improved or worsened as
more FT layers (or modules) were added for ResNet50 and
VGG16, respectively; however, the difference in the performance
among FT1, FT2, and FT3 strategies was not so clear for other
models. We observed some misclassifications for fruit images
with phenotypic values from 1.5 to 3.4 in the prediction dataset
(Supplementary Figure 10).

Grad-CAM visualization revealed the key features in the fruit
image that contribute to the classification. The central and albedo
degradation areas were found to be more relevant to the easy and
soft classes for Peeling and FruH, respectively, than the difficult
and hard classes for the two fruit quality traits (Figure 6A).
In contrast, the flesh and albedo areas showed higher relevance
in both the difficult and hard classes for Peeling and FruH,
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FIGURE 4 | Apparent and partial correlations between fruit morphological features and breeder-evaluated fruit quality traits. (A) Apparent correlation coefficients. (B)
Partial correlation coefficients. Asterisks indicate statistically significant correlations: ∗p < 0.05; ∗∗p < 0.01.

respectively. The seed area also appeared to be highly relevant,
especially with respect to the hard class for FruH.

The relevance levels of the seven regions of a fruit (except
Whole region) (Table 1 and Figure 2) were quantified using
the prediction dataset (Supplementary Table 3) to statistically
reveal the difference between the two classes of each fruit quality
trait (Figure 6B and Supplementary Table 4). The area of the
DegCenter region had significantly higher relevance levels in
the easy and soft classes for Peeling and FruH, respectively. On
the other hand, the areas of Albedo and Flesh regions showed
significantly higher relevance levels in the difficult and hard
classes for the two fruit quality traits. The areas of Flavedo and
Seed regions showed significantly high levels of relevance only in
the difficult and hard classes of Peeling and FruH.

DISCUSSION

In this study, we developed a method to quantitatively and
automatically evaluate fruit morphological features by using the
image analysis of cross-sectional fruit images of citrus fruits. We

then derived 21 fruit morphological features from 8 regions of
the fruit. Multiple explainable machine learning methods and
Bayesian networks highlighted the fruit morphological features
that were important as sensory indices for the breeder-evaluated
traits, Peeling and FruH.

Random forest attained a higher prediction accuracy than
the MLR for both the fruit quality traits. The result may
be explained by the fact that RF can incorporate the non-
linear relationships between a response variable (i.e., a fruit
quality trait) and an explainable variable (i.e., fruit morphological
features), as well as the influences of complex interactions among
the explainable variables (Basu et al., 2018). We found that
there were complex patterns in the partial dependencies (e.g.,
Whole area) indicating the non-linear relationships between fruit
morphological features and the fruit quality traits, as well as
the influences of several low- to high-ordered stable interactions
among the fruit morphological features. The superiority of RF
over MLR has also been reported for yield predictions of wheat,
maize, and potato (Jeong et al., 2016). The high performance
of RF in these instances was said to be due to capturing
the influences of interactions among environmental variables,
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FIGURE 5 | Bayesian networks for causal inference between fruit morphological features and breeder-evaluated fruit quality traits. (A–D) Bayesian networks for the
Peeling. (E–H) Bayesian networks for the FruH. For each trait, four algorithms were trialed. Two of these were score-based [Hill Climbing (A,E) and Tabu (B,F)]; the
other two were hybrid algorithms [Max-Min Hill Climbing (C,G) and General 2-phase restricted maximization (D,H)]. Arc thickness represents arc strength. Labels
provide the strength (and in parentheses, confidence regarding direction) of arcs; these are only shown for those arcs connecting features with traits. For each trait,
the algorithms with the highest Bayesian information criterion (BIC) score are highlighted in bold. A higher BIC score is better because the BIC score is rescaled by
−2 in the “bnlearn” package.

Frontiers in Plant Science | www.frontiersin.org 10 February 2022 | Volume 13 | Article 832749

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-832749 February 9, 2022 Time: 10:13 # 11

Minamikawa et al. Modeling of Citrus Fruit Peelability/Hardness

TABLE 3 | Classification accuracy of deep learning models.

Trait Year VGG16 ResNet50 InceptionV3 InceptionResNetV2

FT0 FT1 FT2 FT3 FT0 FT1 FT2 FT3 FT0 FT1 FT2 FT3 FT0 FT1 FT2 FT3

Peeling 2013 0.85 0.92 0.88 0.92 0.69 0.79 0.81 0.86 0.91 0.94 0.94 0.94 0.90 0.93 0.88 0.89

2014 0.76 0.90 0.88 0.86 0.66 0.78 0.84 0.76 0.86 0.90 0.78 0.78 0.88 0.86 0.86 0.90

FruH 2013 0.85 0.95 0.95 0.95 0.65 0.73 0.78 0.81 0.88 0.92 0.90 0.95 0.79 0.88 0.89 0.87

2014 0.84 0.90 0.86 0.88 0.58 0.70 0.68 0.74 0.78 0.80 0.76 0.86 0.80 0.82 0.82 0.88

Different fine-tuning strategies (FT0, FT1, FT2, and FT3; see Supplementary Figure 2) were compared. Values in bold signify the highest accuracy among the models
for each trait and year.

including climate, soil, photoperiod, water, and fertilization data
(Jeong et al., 2016).

Bayesian networks estimated the underlying network
structure in the fruit morphological features and the breeder-
evaluated fruit quality traits. The result that two score-based
algorithms were more accurate than two hybrid algorithms is
consistent with the recent findings from the studies of wheat
(Momen et al., 2021) and rice (Yu et al., 2019). It may be useful
to genetically improve the fruit morphological features that have
directed (rather than undirected) arcs to Peeling and/or FruH to
improve these fruit quality traits. However, a caution is required
when interpreting the causal relationships estimated by the
networks, because Bayesian networks have many assumptions
(Heckerman et al., 1995), including that these networks were
constructed by only the observed variables and did not include
any unobserved variables. Flesh Lab (a) and Flavedo Lab (a) were
directly connected to Peeling and FruH, respectively, implying
the existence of unobserved variables between these variables,
as information on color is not likely to be directly associated
with the physical properties of Peeling and FruH. The partial
correlation coefficients of these color information variables, after
removing the influence of other observed variables, are not zero,
which may also support this hypothesis. To elucidate the detailed
relationship between these color information variables and the
fruit quality traits, it would be better to increase the number
of citrus varieties and explainable variables by extracting and
evaluating more fruit morphological features from other image
types (e.g., longitudinal section).

The higher classification accuracy of deep learning models
when using the images of 2013 may be explained by the fact that
we had more fruit images from 2013 than from 2014. In general,
a large dataset has been required for the success of deep learning
(Lecun et al., 2015). FT1, FT2, and FT3 strategies offered higher
accuracies compared to FT0, confirming the importance of fine-
tuning strategy (Chollet, 2017). However, the VGG16 with more
layers for the fine-tuning, led to worse results. The fine-tuned
VGG16 may overfit to the dataset and learn irrelevant features
in the image due to their large entropic capacity (Chougrad et al.,
2018). Some misclassifications were found in the images showing
moderate Peeling and FruH values, which might have only small
actual differences in the features between the two classes in the
moderate levels. Even among the breeders, sensory evaluations
can differ, especially among the moderate levels. Thus, there is a
possibility that the binary label classification was ambiguous and
not accurately assigned in these levels.

By combining the Grad-CAM visualization and the
information of the fruit morphological features, the relevance of
fruit morphological features to the classification was revealed in
an objective manner. This suggests that it would be important
to connect the visualization results with knowledge on plant
physiology and breeding. Toda and Okura (2019) have stated
that “even if the visualization methods generate meaningful
results, humans still play the most important role in evaluating
the visualization results by connecting the computer-generated
results with professional knowledge, for example, in plant
science”. The feature visualization methods have provided
novel insights into agronomically important traits (e.g., calyx-
end cracking (called, hetasuki in Japanese; Akagi et al., 2020)
and seedlessness (Masuda et al., 2021) of persimmon fruits)
at an accelerating pace. The biological interpretation of the
visualization results by the physiologists and breeders would be
important not only to increase the reliability of deep learning
models but also to understand the molecular mechanism of
targeted traits.

Integrating all the methods applied in this study, DegCenter
area was significantly and directly associated with both Peeling
and FruH in all of the methods used, while Seed area was also
significantly and directly associated with FruH in each of the
methods (Supplementary Table 4). The significant associations
between the two morphological features and the two quality traits
were practically observed in Satsuma mandarin and Banpeiyu
(Supplementary Figure 5). This result suggests that DegCenter
area would contribute to the high correlation between the two
fruit quality traits, while the difference between the two traits
may be explained by Seed area. Citrus fruits with a larger
DegCenter area tended to be easier-peeling and softer fruits
in this study. On the other hand, citrus fruits with a larger
Seed area tended to be harder fruits. To improve these fruit
quality traits, it would be effective to change the DegCenter and
Seed areas to their desired directions. DegAlbedo and Flavedo
areas would be other candidates to change in improving the
Peeling and FruH, respectively, because DegAlbedo and Flavedo
areas were significantly and directly associated with Peeling
and FruH in all but one or two methods (Supplementary
Table 4). The citrus fruits with a larger DegAlbedo area and
a smaller Flavedo area tended to be easier-peeling and softer
fruits. Whole area, which was significantly, but not directly,
associated with both Peeling and FruH in all of the methods,
could also be a candidate for the improvement of the two
fruit quality traits.

Frontiers in Plant Science | www.frontiersin.org 11 February 2022 | Volume 13 | Article 832749

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-832749 February 9, 2022 Time: 10:13 # 12

Minamikawa et al. Modeling of Citrus Fruit Peelability/Hardness

FIGURE 6 | Visualization of fruit morphological features contributing to deep learning-based classification. (A) Grad-CAM visualization using the last convolutional
layer of the VGG16 model. For each trait, the left and right images indicate the original and feature-visualized images, respectively. (B) Differences in the relevance
levels between the classification classes for each fruit morphological region. Asterisks indicate statistically significant differences: *p < 0.05; **p < 0.01.
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Some representative easy-peeling mandarins have been
reported to have loose albedo with great aerial spaces (Yu et al.,
2021). In citrus fruits with large albedo degradation, called peel
puffing, the degradation of the central core also tended to be large
(Inoue, 1980). It seems that the degradations of albedo have a
connection to the central core. Thus, citrus fruits with a larger
DegCenter area could have degradation of albedo (including
small amounts that were difficult to be evaluated by image
analysis in this study) which may lead to easy peeling. The ease
of peeling is also affected by the hardness of citrus fruits, because
the breeders must first puncture the peel with their fingers and
then separate the peel from the flesh locules (Figure 1). The cavity
of the citrus fruit with a large DegCenter area would soften the
fruit, and hence would lead to easy peeling. Small Flavedo area
would also contribute to a soft fruit and easy peeling. Yu et al.
(2021) suggested that total peel thickness, which showed a high
correlation with flavedo thickness (r = 0.64), was relevant to peel
firmness and hence contributed to the ease of peeling, although
flavedo, albedo, and total peel thickness were not significantly
correlated with the ease of peeling (Goldenberg et al., 2014, 2018).

Metabolome analysis revealed a lower concentration of citric
acid in the albedo tissue of the peel puffing citrus fruits (i.e.,
peelable and soft fruits) than that in the normal citrus fruits
(Ibáñez et al., 2014). The GWAS using the parental citrus varieties
and breeding population detected a significant common single
nucleotide polymorphism (SNP) on Chromosome 4 for acid
and weight (Minamikawa et al., 2017). This SNP resided in
the gene Ciclev10031681 m.g, which is annotated as glutamate
dehydrogenase (GDH). The GDH is involved in avocado fruit
maturation (Loulakakis et al., 1994). Thus, GDH could have
pleiotropic effects on the concentration of citric acid and
fruit weight/size, which are involved in citrus fruit maturation.
Citric acid is the major organic acid in citrus fruits, and the
acidity and weight/size of fruits generally decrease and increase,
respectively, during fruit maturation (Omura and Shimada,
2016). Considering the relation of the citric acid with Peeling and
FruH (Ibáñez et al., 2014) and GDH that may have pleiotropic
effects on citric acid and whole area (i.e., fruit size), the significant
association of the whole area with Peeling and FruH observed
in this study could be related to the concentration of citric acid,
which may be regulated by the GDH.

Cell-wall polysaccharides have been reported to be associated
with cell wall development and strength, which influence fruit
firmness and peelability of the citrus fruits (Muramatsu et al.,
1999; Kita et al., 2000; Minamikawa et al., 2017; Goldenberg
et al., 2018). The concentration of cell wall polysaccharides was
significantly higher in the flavedo tissue of the hard-peel of
Hassaku (C. hassaku hort. ex Tanaka) than that in the soft-peel
of Satsuma mandarin (C. unshiu Marcov.), implying that the
degradation of the cell wall polysaccharides resulted in the peel
softening (Muramatsu et al., 1999). The expression of cell wall-
related genes, endoxyloglucan transferase, expansin, extensin,
glycine-rich protein, and pectinacetylesterase homologues, was
detected in both the albedo and flavedo tissues, during the citrus
fruit development (Kita et al., 2000). However, the expression
pattern of three of those genes was different between the albedo
and flavedo tissues, which may lead to the formation of large

intercellular spaces in the albedo, and hence accelerate the ease
of peeling (Kita et al., 2000).

The characteristics of fruit hardness in the presence or absence
of seeds have been evaluated in citrus (Sharif et al., 2021),
avocado (Hershkovitz et al., 2010, 2011), and atemoya (dos Santos
et al., 2019). Fruit firmness was significantly higher in seeded
“Kinnow” mandarins than less seeded “Kinnow” strains (Sharif
et al., 2021). The seeded avocado fruit has been reported to
be more firm compared to the seedless fruit because seeds in
the avocado fruit were involved in the delay of the ripening
processes (Hershkovitz et al., 2010, 2011). Ethylene application
elicited lower levels of ethylene in the seeded fruit than in the
seedless fruit, concomitantly with a massive augmentation of
a gene coding for a negative regulator of ethylene responses,
PaCTR1 (Hershkovitz et al., 2010). This implied that the negative
regulator, PaCTR1 may moderate the effect of ethylene on the
seeded fruit (Hershkovitz et al., 2010). It has been suggested
that ethylene could be implicated also in the regulation of fruit
maturation of non-climacteric citrus (Alonso et al., 1995; Katz
et al., 2004). In atemoya, the seedless fruits showed less firmness
and had a lower content of calcium in the exocarp compared
to the seeded fruits (dos Santos et al., 2019). Calcium has been
considered to inhibit fruit softening by preserving the cell wall of
the fruits (dos Santos et al., 2019).

In this study, we combined the image analysis, explainable
machine learning methods, and Bayesian networks to investigate
and identify the fruit morphological features that could act as
sensory indices for the breeder-evaluated fruit quality traits,
Peeling and FruH. The results suggest that the approaches
applied in this study could be effective to dissect the “breeder’s
sense,” which has been considered up to now as a “black box”.
The fruit morphological features relevant to Peeling and FruH
could be used as novel indices for Peeling and FruH in a
citrus breeding program. The efficient collection of data on
fruit morphological features related to fruit quality traits from
a breeding program could improve the accuracy of GWAS and
GS for citrus fruit quality traits. It can also accelerate both
“breeding-assisted genomics” (Poland, 2015) and “genomics-
assisted breeding” (Iwata et al., 2016; Varshney et al., 2021),
simultaneously, to contribute to citrus breeding and genetics.
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